Visual computation of surface lightness: Local contrast vs. frames of reference
نویسندگان
چکیده
Seeing black, white and gray surfaces, called lightness perception, might seem simple because white surfaces reflect 90% of the light they receive while black surfaces reflect only 3%, and the human retina is composed of light sensitive cells. The problem is that, because illumination varies from time to time and from place to place, any amount of light can be reflected from any shade of gray. Thus the amount of light reflected by an object, called luminance, says nothing about its lightness. Experts agree that the lightness of a surface can be computed only by using the surrounding context, but they disagree about how the context is used. We have tested an image in which two major classes of theory, contrast theories and frame-of-reference theories, make very different predictions regarding what gray shades will be seen by human observers. We show that when frame-of-reference is varied while contrast is held constant, lightness varies strongly. But when contrast is varied but frame-of-reference is held constant, little or no variation is seen. These results suggest that efforts to discover the exact algorithm by which the human visual system segments the image received by the retina into frames of reference should be given high priority.
منابع مشابه
Linking luminance and lightness by global contrast normalization.
In the present experiment we addressed the question of how the visual system determines surface lightness from luminances in the retinal image. We measured the perceived lightness of target surfaces that were embedded in custom-made checkerboards. The checkerboards consisted of 10 by 10 checks of 10 different reflectance values that were arranged randomly across the board. They were rendered un...
متن کاملLocal computation of lightness on articulated surrounds
Lightness of a grey target on a uniform light (or dark) surround changes by articulating the surround (articulation effect). To elucidate the processing of lightness underlying the articulation effect, the present study introduced transparency over a dark surround and investigated its effects on lightness of the target. The transparency was produced by adding a contiguous external field to the ...
متن کاملLayered image representations and the computation of surface lightness.
A fundamental goal of research in the perception of surfaces is to understand the nature of the computations and representations underlying lightness perception. A significant challenge posed to the visual system is recovering surface lightness from the multiple physical causes that contribute to image luminance. One view asserts that the visual system decomposes the image into estimates of ill...
متن کاملA cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of comput...
متن کاملParadoxical lightness contrast
The visual system's computation of lightness (perceived reflectance) leads to contrast effects in which a gray target region appears lighter on a black background than on a white one. Here we show a paradoxical contrast effect in which targets look lighter after adding regions that increase the scene's average luminance, and darker after adding regions that decrease this luminance. The paradoxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010